Functions for computing item summary, i.e. some summary measurements (of arbitrary nature) of item (one or more columns) present in data frame.
summarise_item(tbl, item, ..., .prefix = "")
summarise_game(tbl, ..., .prefix = "")
summarise_player(tbl, ..., .prefix = "")
summarize_item(tbl, item, ..., .prefix = "")
summarize_game(tbl, ..., .prefix = "")
summarize_player(tbl, ..., .prefix = "")
tbl | Data frame. |
---|---|
item | Character vector of columns to group by. |
... | Name-value pairs of summary functions (as in dplyr::summarise). |
.prefix | A string to be added to all summary functions' names. |
Output of summarise()
as not grouped tibble
.
Basically, summarise_item()
performs the following steps:
Group tbl
by columns stored in item
. Note that starting from 0.8.0
version of dplyr
this might give a warning in case of implicit NA
s in
factor columns (NA
present in column values but not in its levels)
suggesting to add NA
to levels.
Apply dplyr's summarise()
.
Ungroup result.
Convert to tibble.
Add .prefix
to names of summary functions.
summarise_game()
and summarise_player()
are wrappers for
summarise_item()
using item = "game"
and item = "player"
respectively.
Common item summary functions for competition results.
ncaa2005 %>%
dplyr::mutate(game_type = game %% 2) %>%
summarise_item(c("game_type", "player"), mean_score = mean(score))
#> # A tibble: 10 x 3
#> game_type player mean_score
#> <dbl> <chr> <dbl>
#> 1 0 Duke 10.5
#> 2 0 Miami 25
#> 3 0 UNC 15.5
#> 4 0 UVA 12
#> 5 0 VT 48.5
#> 6 1 Duke 7
#> 7 1 Miami 37.7
#> 8 1 UNC 9.5
#> 9 1 UVA 38
#> 10 1 VT 18.5#> # A tibble: 10 x 3
#> game mean_score min_score
#> <int> <dbl> <int>
#> 1 1 29.5 7
#> 2 2 22.5 21
#> 3 3 22.5 7
#> 4 4 22.5 0
#> 5 5 25 16
#> 6 6 21 17
#> 7 7 17 7
#> 8 8 6 5
#> 9 9 16.5 3
#> 10 10 33 14